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Jancovici derived the exact r 2 term in the expansion of the screening potential 
of the one-component plasma (OCP) around r--0, which led to much 
improved analysis of the simulation data, but the correspondingly important 
term has never been calculated for electron-screened plasmas. The Onsager 
molecule approach provides the strong-coupling-limit result for the OCP 
screening potentials, features the exact Jancovici r 2 term, and gives a com- 
prehensive physical picture of the structure of strongly coupled plasmas. It is 
used here to derive the Strong-coupling screening potentials of electron-screened 
plasmas represented by the Yukawa potentials and, in particular, the corre- 
sponding Jancovici r 2 term. 
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I. I N T R O D U C T I O N :  S C R E E N I N G  P O T E N T I A L S  A N D  
E N H A N C E M E N T  F A C T O R S  

It is o u r  g r ea t  p leasure  to con t r ibu te  to this issue in h o n o u r  of  B e rna rd  
Jancovici ,  w h o  m a d e  i m p o r t a n t  con t r ibu t ions  to the subject  we address  in 
this paper .  

Classical  p lasmas  c o m p o s e d  of  classical posi t ive ions in a un i fo rm 
neut ra l iz ing  b a c k g r o u n d  charge  densi ty  of  degenera te  electrons,  are  basic 
mode ls  for dense  stellar mate r ia l s  and  p rov ide  i m p o r t a n t  reference systems 
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in condensed matter physics, t~'2) These systems are referred to as "one 
component plasma" (OCP), "binary ionic mixture" (BIM), or "multi ionic 
mixture," depending on the number of different ionic species. Electron 
screening effects change the interionic interactions from pure Coulomb 
"l/r" to "screened-Coulomb," and the standard linear response treatment 
with the Debye-Huckel or Thomas-Fermi approximations leads to the 
Yukawa interparticle interaction "e-~/r. ~3) Much effort has been invested 
over the years ~4) in increasing the accuracy of the calculations of the short 
range screening potentials in strongly coupled plasmas, for two main 
reasons: (1) The enhancement factors for the thermonuclear reaction rates 
which are important for stellar evolution, particularly for Carbon ignition 
in degenerate cores, are essentially controlled by the short range part of the 
screening potential. (2) The screening potentials play a key role in the 
study of the short range behavior of the bridge functions, notably their 
universal properties, which proved seminal for developing an accurate 
theory of liquid structure. ~s) They offer consistency checks for the equation 
of state of the mixture, and for closure approximations in integral equation 
theories for the fluid pair structure. 

The screening potentials Ho.(r) of a classical mixture of particles inter- 
acting through the pair potentials Co.(r) are related to the pair correlation 
functions gij(r): 

Ho.(r ) q~o (r) = kn T + In[ gij(r) ]. (1) 

The pair correlation function can be expressed through the free energy 
change upon fixing the positions of the pair of fluid particles in the 
appropriate configuration to form an interaction-site molecule ~6--9) 

1 
Hi/(r) = k- ~ [-(F~"(r)-F~X)+q~o.(r)] (2) 

Here F~ x is the configurational (excess over ideal gas) free energy of the 
N-particle system, and F~X(r) is that of the same system but with the pair 
of particles i and j in question being kept at fixed separation, r, forming a 
two-site cluster. F~X(r) does contain the intramolecular interaction cko.(r), 
so that Hij(r) is finite as r ~ 0. 

In the non screened classical plasma the point ions of charges Zie and 
Zje interact through the bare Coulomb potential: 

dpC(r) ( ~ ) Z i Z j  1 
r 

(3) 
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It is convenient to measure all distances in units of the Wigner-Seitz 
radius, a=(3/4nn) 1/3, where n=N/V is the total number density of the 
ions, and to define the Coulomb coupling parameter F=e2/aknT. After 
earlier important calculations by DeWitt and coUaborators, ~1~ additional 
significant contributions were made by Jancovici and collaborators: Using 
Eq. (2), assuming the validity of the linear mixing rule ~1~' ~2) for the free 
energy of the BIM, and by employing an accurate OCP equation of 
state, t13) Jancovici ~s) obtained a good estimate of H(0) for the OCP. He 
also derived the exact leading r 2 term in the expansion around r = 0  
(the Jancovici coefficient), which was used by Alastuey and Jancovici ~14) to 
extrapolate the simulation data for H(r)= Fir + In g(r) towards the origin 
r--0. 

A convenient starting point for analysing the electron response correc- 
tions ~5-~9) to the interionic screening potentials is to consider classical 
mixtures of charged particles interacting through the repulsive Yukawa 
(screened Coulomb) potentials. ~9) "Yukawa" mixtures are composed of 
positively charged, Zie > 0, point particles interacting through the Yukawa 
pair potentials: 

~i~(r)=(~) ZiZje-~rr " (4) 

The leading strong coupling terms for the potential energy, direct correla- 
tion functions, and screening potentials for the Coulomb and Yukawa fluid 
mixtures (corresponding to classical plasmas and electron screened classical 
plasmas), were obtained from the Onsager molecule approach t22'9' t7.20,2~) 
with full thermodynamic consistency and in complete agreement with the 
Alastuey-Jancovici analysis of early simulations t23) in strong coupling, and 
with recent highly accurate simulations data. ~4) This approach follows from 
Onsager's t24) method for obtaining exact lower bounds for the potential 
energy of systems of charge distributions. The Onsager molecule theory 
provides the asymptotic strong coupling properties of classical plasmas 
analytically and in a simple physically intuitive way. It was used in order 
to derive explicit expressions ~22"9'26) for Ho.(r ) in Coulomb plasmas, and 
for Ho.(r=O ) in Yukawa plasmas. (17"2~ In this paper we use this method 
in order to make a semi analytic calculation of (an accurate approximation 
to) the Onsager molecules for the Yukawa potential. We present the exact 
Onsager molecule result for the strong coupling limit of the Jancovici coef- 
ficient for the Yukawa interaction, and an accurate approximation for the 
full Hu(r ) for strongly coupled Yukawa systems. The classical Coulomb 
and Yukawa systems are only model systems, and our results can be directly 
applicable only for weakly screened plasmas (~ ~ 1). However, many quite 
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disparate systems with screened Coulomb interactions can be described by 
Yukawa interparticle potentials which thus make important reference 
systems in condensed matter physics, (~9~ and in this broader context our 
results for the Yukawa potential can be useful also when the screening 
parameter is large (~ > 1 ). 

The main thrust of the DeWitt or Jancovici approaches to screening 
potentials was in relation to enhancement factors for nuclear reaction rates. 
The leading term in the expression for the enhancement factor is 
exp[Ho.(r = O)/kBT] but all the small r expansion of Ho.(r ) is relevant. The 
rate of nuclear reactions plays a major role in many astrophysical 
problems. Not only does it set the time scale for the nuclear energy release 
in the core of all stars, thus setting the time scale for stellar evolution, but 
it is crucial in determining the fate of dense stars. In particular, it deter- 
mines the dynamical evolution of binary systems, accreting white dwarfs 
and neutron stars. The many body effects reduce the Coulomb barrier, and 
enhance the probability of a reacting collision, beyond the pair approxima- 
tion in Gamow's barrier penetration factor. The ratio between the 
probability of a pair encounter in the medium to that in the low density 
pair-approximation, is called the enhancement factor. The ions inside 
dense stars (such as white dwarfs and neutron stars) are strongly coupled, 
F ~  (potential energy )/( kinetic energy)~ 100, the enhancement factor is 
roughly proportional to exp[H(0)l ,  and H ( 0 ) ~  F, so that an error of 2% 
in the value of H(0) may yield a reaction rate which is off by an order of 
magnitude. Relatively small changes in the enhancement factors of nuclear 
reactions can make a spectacular difference in the outcome of an accreting 
massive white dwarf: Depending on the exact value of this factor, the star 
becomes either a type-I supernova or collapses into a neutron star .  ~27~ This 
demonstrates the importance of accurate calculations for these factors, 
which have been considered by many authors over several decades, (28-32~ 
but in most cases only the screening of the Coulomb barrier due to the ions 
has been calculated. In these calculations one usually assumes that the elec- 
trons can be treated as a uniform rigid background. In this case, the classi- 
cal enhancement factor can be calculated by a comprehensive approach for 
the screening potentials of Coulomb mixtures, t2~" 33) which incorporates the 
concept of "Onsager molecules" entirely within the spirit of the DeWitt or 
Jancovici approach. The rigid background approximation is valid as long 
as the electron Thomas-Fermi screening length is larger than the mean 
distance between the ions. However, in some astrophysical situations, e.g., 
massive white dwarfs or low-mass stars, t34) this condition is no longer 
fulfilled, and the electron gas becomes polarized by the field created by 
the ions. This induces an electronic contribution to the screening of the 
inter-ionic Coulomb barrier, i.e., an electron-screening contribution to the 
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reaction rate. Although some calculations including this effect have been 
conducted in the special case of massive white dwarfs, (35) a comprehensive 
treatment is yet to be done. Needless to say that the present linear response 
model, which features a diverging electron density at the nucleus can not 
provide a serious discussion of the incorporation of electronic effects into 
the nuclear enhancement factor, which requires a more accurate treatment 
of the electron density near the nucleus and its effect on the total 
internuclear potential. Correct treatment of the electron density near the 
nucleus is outside the scope of any linear response treatment. Nevertheless, 
there are two features of the present methodology as developed by one of 
the authors, ~21'9) which make it relevant also to the nuclear enhancement 
factor problem: (1) The confined-atom and confined-molecule full Kohn- 
Sham density functional treatment, is a proper way to approach the 
problem. The Onsager-Thomas-Fermi "atoms" and "molecules" (see 
below) utilize the same conceptually correct "confined molecule" physical 
picture. Its deficiency is the use of a very simple, indeed oversimplified elec- 
tron density functional. This can be improved directly by incorporating the 
full Thomas-Fermi density functional with further corrections that improve 
the electron density at the nucleus. (2) Given an effective pair interaction 
~b(r) between the nuclei (the result of a proper solution of the electron 
density problem) then the enhancement factor is closely related to the 
corresponding screening potential H(r). The Yukawa potential Ae-~'/r is a 
quite general form for the short range interatomic interaction, and an 
analytic expression for H(r) in strong coupling for this potential should be 
useful. 

This discussion connects the present "Onsager molecule" approach 
to screening potentials to the enhancement problem on the basis of the 
DeWitt-Jancovici approach. This approach relies in general on calcula- 
tions of the correlation functions in a classical Coulomb gas, followed by 
construction of an effective two-body potential and a quantum barrier 
penetration calculation. It should be noted, however, that very recent work 
(L. S. Brown and R. F. Sawyer, Rev. Mod. Phys. 69, p. 411 (1997)) found 
that such an approach "will miss physics that is as important as the physics 
that it includes." 

In Sec. II we briefly summarize the Onsager molecule results for 
Coulomb plasmas. The Onsager-smearing method for obtaining an exact 
lower bound to the potential energy of Yukawa plasmas is described in 
Sec. III. In Sec. IV we present a semi-analytic approximation to the 
Onsager molecule for the one-component Yukawa plasma, which features 
the exact Onsager-molecule result for H(r = 0) and for the Jancovici coef- 
ficient. In Sec. V we point out the scalings that relate the one component 
results to those for the mixture. 
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II. "'ONSAGER MOLECULES" AND SCREENING POTENTIALS 
FOR COULOMB PLASMA MIXTURES 

The leading term in the asymptotic strong coupling expansion of the 
configurational free energy of the fluid is an exact Onsager-type t24) lower 
bound, t22.17) e.g., the ion-sphere result for the classical plasmas, t25) The two 
free energies in Eq. (2) are bounded from below by the corresponding 
leading terms. In particular, the excess free energy of the mixture is bounded 
by the sum of "Onsager-atom" self energies: 

F~" >>. Z Niuoa,, (5) 
i 

where 

UoA.~= -0 .9  (6) 

is the self-energy of an "Onsager atom" consisting of a point charge Z~ at 
the center of a neutralizing sphere of radius R~ having the background 
charge density, R~=(Zfl<Z>) ~/3. Recall that all distances are measured in 
units of the Wigner-Seits radius. Similarly, ~9) 

F;"(x)>~ 
k # i , k # j  

NkUoa, k+(Ni--  1)Uoa, i+(Nj-- 1)Uoa, j+Uom, o.(r) (7) 

where U o~. u is the self-energy of an "Onsager molecule" consisting of a 
pair of ions Z~, Zj separated by a distance r in a uniform neutralizing 
charge cloud of the background charge density. The shape of this molecule 
is uniquely determined by the surface on which the electrostatic field 
vanishes. The screening potential is obtained as a difference between two 
exact lower bounds ~9) 

1 [(e2/a) Z,Zj (UoM, o.(r)+uoA,,+Uoa, j)] H~ = ~  r - (8) 

For the one component plasma HoM(r), the corresponding function 
with all Z~= 1 can be expressed through the function h2(r): 

HoM(r~2) 
F 

9 (25/3 __ 2) = 1 r2 =1-6 -4 + h2(r) r4 (9) 
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where the function 

h 2 ( r )  ~- 0.038 - 0 . 0 0 2 6 r  2 

was obtained by fitting the Onsager molecule numerical d a t a .  (26~ From 
elementary electrostatics we find that the small-r expansion for general 
mixtures takes the form 

where 

and 

HoM, o'(r) 
F 

=hr  lr 2... (10) 

( (z, + zj): 
. 3 R ) ) I / 3  ho o = (Ri + R, RjJ (11) 

1 z,  zj  
ho., l =~ R~ q_ R 3 (12) 

This coefficient of the r 2 term, i.e., the Jancovici coefficient as obtained 
from the Onsager molecule, is also the exact Jancovici coefficient for the 
plasma mixture. This can be established (4) by direct generalization of the 
original derivation by Jancovici. (s) The terminology "Onsager atoms" and 
"Onsager Molecules" was introduced by one of the authors ~9) in view of 
Onsager's method ~24) for obtaining a lower bound for the total energy of a 
neutral system of charge distributions by immersing the system in a con- 
ducting fluid. Onsager's bound turns out c22' 36) to  be the relevant method in 
the present context. We are not aware of a mathematical proof that 
Onsager's lower bound is the best possible lower bound in strong coupling. 

The surface of the molecule is that where the electric field vanishes 
since the molecule is neutral and since by Onsager's construction it must 
be an equipotential surface. The finding of the shape of the Onsager 
molecule, and.the calculation of Uo~.u(r) for general separation r, repre- 
sent a straightforward but rather tedious numerical problem. It is thus 
helpful to consider limit cases, scaling relations for mixtures, and simple 
approximations for Uo~.~j(r). The function Ho~(r) given above is in 
excellent agreement with an earlier estimate ~9~ based on (the much simpler 
to calculate) convolution-smearing approximation to the Onsager molecule 
self energy. That smearing approximation, which yields the same first 
two terms in the small-r expansion, h u. o and h u, ~, as the exact Onsager 
molecule, will be described and employed below for the more general case 
of the Yukawa potential. 
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III. " 'ONSAGER-SMEARING'" LOWER BOUNDS FOR THE 
POTENTIAL ENERGY OF Y U K A W A  PLASMA MIXTURES 

The Yukawa intermolecular potential, r has the special 
property r176 that it gives rise to the same functional form for the poten- 
tial outside a spherically symmetric distribution of matter: Thus, if a point 
Yukawa charge Z is smeared out radially with distribution p(r) upto a 
finite radius R, and if at the same time the charge is appropriately renor- 
malized, Zrr = q( ~, R )Z, 

1 4~r f p(x) x sinh(~x ) dx ( 13 ) 
q(or R) = ~  " 

then the potential outside the smearing radius R remains the same as for 
the original point charge. For a uniform distribution inside a sphere of 
radius R, p(r ~< R) = 3/4~R 3, obtain 

q( oq R )~fo,,. = Q( ocR ) (14) 

where 

2t  3 t 2 9t  4 

Q(t )=3[e t ( t - l+e- t ( t+l ) ]=l -7 -~"+1400  + ~ o  "'" ~1 (15) 

The renormalization property enables ~1s'2~ to follow the Onsager 
"smearing" procedure as developed for obtaining a lower bound for the 
potential energy of Coulomb systems t24"25"22) and apply it ~ls'2~ to general 
Yukawa systems. Consider classical mixtures consisting of N=Y'.~N~ 
positively charged, Z~e > 0, point particles of types i in a volume V, inter- 
acting through the Yukawa pair potentials c~o.(r)/ksT= Z~ZjFe-~/r. The 
interaction potential energy is measured relative to the (infinite) self energy 
of the point charges making the system. The interaction potential energy of 
the system is bounded by the Onsager-type best lower bound obtained by 
uniformly smearing each particle of type i inside a sphere of radius R~. The 
bound is given by:  (18'2~ 

  Oawo 1 uYukawa~ ""bound = "-'-2 ~i" N,~, , (r=O) +~---~--d- 5 N, ZiQ(czR,) (16) 

where ~0(r) is the interaction between two uniform spheres, of radii R~ and 
Rj, and Yukawa charges Z~Q(aR~) and ZjQ(~Rj), so that 7r 
Rj)=(e2/a) ZgZje-~/r, and 7~(r=O) is the self energy of the uniformly 
distributed Yukawa charge in the sphere. The sum Y'.~ N~Z~Q(otR~) is the 
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total smeared Yukawa charge in the system, and the corresponding term in 
uVkaw~ is the self energy of a uniform distribution of this charge in the bound 

entire volume of the system. Recall that 

~',,(r) = ~ r , ~R, (17) 

where 

x x 3 v(t)  
r t) = A(t) + B(t) ~ + A(t) ~ + - - ~  ( 1 - 

v~(t) 
e -xt) + ~ - ~  (1 - cosh(xt)) 

(18) 

and where 

A(t) 3Q2(t) 3 
= t2 ; B ( t ) = ~ A ( t )  

3 
Uo( t) = ~-fi Q( t)( t + 1)e - t  

1 - t 2 3 
; v(t) = -2Uo(t) = - - ~ Q ( t ) ( t +  1)e - t  

t 2 

(19) 

(20) 

Note that 

v2(t) 
B ( t ) - t v ( t ) - - ~ = O  (21) 

2 

so that @(x, t) has the following smaU-x expansion: 

@(x, t )= (A(t) + v(t)) + (iv(t)  t 2) x 2 + .- (22) 

We also define 

@(x = 0, t) - cp( t) = A( t) + v( t) (23) 

so that 

Uo(t) = - � 8 9  + 1A( t )  (24) 

It is useful to note the following identity (prime denotes derivative, e.g.,  
A'(t) =dA(t) /dt)  

tq~'(t)--q~(t)= t(A'(t) + 2A(t) (25) 

822/89/1-2-20 
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whereby defining q~(t) = t2cp(t), A(t) = t2A(t), obtain 

m 

t~'( t) - 3Cp( t) = tA( t) (26) 

Using these identities, the variational equations 

0 I1 Ukawa 
"-'bound 

ORi  
~ = 0 ;  i =  1, 2,... (27) 

for optimizing the smearing radii, R~, are easily solved, and the following 
best Onsager type lower bound was obtained: t~8' 20. 21) 

u Ukawa __ 
best -  bound E Niui (28) 

expressed as the sum of "self" (dependent only on each type i) terms: 

( e . ~ )  Z 2 Uo(t~Ri) (29) Ui--" R/ 

where the smearing radii, R~, are obtained from the solution of the 
following set of non-linear coupled algebraic equations: 

Z,Q(~R~) i =  1, 2,... (30) 
R~ = Zi  Ni/N Z~Q(~R~)' 

For a one component system of N charges Zi = Z we get, Ri = R = 1, and 

UvkOwo rN ] /ZZ(~)=Nuo(~)  best -- boundL " (31) 

The interaction potential energy of the mixture (per particle, in 
temperature units), is given in general by the standard energy integral 
involving the pair (radial) distribution functions, go.(r), 

U n f d?ij(r) d3 r (32) 
N k s T -  2 ~.. xixj gij(r) k s T  

zj 

where x i=Ni /N  are the number concentrations, and n=N/V.  For the 
Yukawa potential this takes the special form, 

U 31" 
Nkn T - 2 ~ x'xj~ru(~) (33) 

O" 
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where r is the Laplace transform of [rgij(r)]. 
The Onsager bound rrUkawa /~rt. T is equal (2~ to the expression (33) 

~" b e s t  - -  b o u n d / "  * ~" B 

provided that the t~u(~ ) are taken as the limit r/= 1 of the solution of the 
Percus-Yevick equation for a mixture of hard spheres with radii R~ given 
by (30). This r/= 1 limit of the Percus-Yevick equation is also the leading 
F ~  oo strong coupling term of the hypernetted-chain approximation for 
the pair correlation functions. Under the broad assumption of non-singular 
bridge functions (i.e., those diagrams missing from the hypernetted-chain 
approximation) it is also the exact Madelung (i.e., asymptotic strong 
coupling) energy term for the fluid. The F-~ oo limit of the hypernetted- 
chain Ornstein-Zernike direct-correlation functions, co.(r ), is given by the 
interaction between the optimal distributions in the Onsager smearing pro- 
cess, cij(r)/F= -~o(r). Indeed, by Eq. (16) we verify the Mean-Spherical- 
Model form of the Ewald identity: (22"36) 

u Y u k a w a  
b e s t  - -  b o u n d  _ _  El 1 

FNkBT - 2  ~.. x 'xj~~ �9 x'Tt"(r=O) 
g 

(34) 

IV. " 'ONSAGER M O L E C U L E S "  A N D  SCREENING POTENTIALS 
FOR THE O N E - C O M P O N E N T  Y U K A W A  P L A S M A  

The optimal Onsager atoms and molecules for obtaining the exact 
energy lower bound for the Yukawa potential, require the solution of 
the confined-atom or confined-molecule linearized Thomas-Fermi equa- 
tions, t~7"18'2~ These equations can be solved analytically for the atom 
but become tedious numerically for the molecule. Thus, we shall use here 
the convolution-smearing approximation, t9) and will check its smaU-r 
results by comparison with the exact Onsager molecules for the Yukawa 
plasma. The convolution-smearing approximation provides a quantity which 
is still a tight lower bound, but not as good as the Onsager molecules. 

Consider the one component system composed of ( N - 2 )  point 
Yukawa charges of charge Z, and of one pair of charges Z at fixed distance 
r. Denote the smearing radius of each the ( N - 2 )  free charges by R~, and 
that for each of the constrained pair by Rm. The total smeared charge of 
the system is 

N~Z~Q(~Ri) = ( N -  2) ZQ(~Ra) + 2ZQ(~R~) 
i 

(35) 

The self energy of each of the free smeared charges is (eE/a) Z2/Raqg(o~Ra), 
while that of the pair of constrained charges (viewed as a single two-site 
"molecule") is [ 2(e2/a) z2/Rm~O(~Rm) + (e2/a) Z2/Rm@(r/Rm, 0oR,,,)]. Recall 
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that we measure distances in units of a and that V= 4z~/3Na 3, so that an 
exact Onsager-smearing lower bound to the energy is given by 

uVkawar (N__ 2) . . . .  ] bound L 
(e2/a) 

Z2 [ 
= -- ( N -  2) ~--~ ~0(eRa) - 2 ~ q,(~R~)+~ 0 , ~R~ 

+ 2 o c 2  ZQ(o~Ra)+~ZQ(~R,.) +z2e  r (36) 

The term Z2e-=/r takes into account the "intramolecular" interaction as 
required for F~lX(r) in Eq. (2). The optimization equations for the bound, 
Eqs. (27), take the form 

R ] = Q( o~R.) (37) 
( (N - 2 )IN) Q(o~Ra) + (2/N) Q(o~R,,,) 

R~= Q(ocR,,,) 
( ( N -  2)/N) Q(~Ra) + (2/N) Q(o~Rm) 

x 1 + 6Q(~R,,,) Q'(o~R,.) OR,,, 0 , o~Rm (38) 

In the limit N ~ oo the first equation above gives 

R a =  1 

and R,,,(r) is obtained from the following form of the second equation 
above: 

R~ = Q(o~R,,,)Q(o~) [ 1 + 0(1 (r))1 
6Q(•R,,,) Q'(o~R.,) OR,,, - ~  g/ -R-s o~R., (39) 

where Q'(t)= dQ(t)/dt. For r = 0  we have R 3 = 2Q(o~R,,,)/Q(o~) as expected 
from Eqs. (30), and the result R,,,(0c) is displayed in Fig. 1. For r~> 2 we 
have R3(r>~ 2)=  Q(o~R,,,)/Q(o~) so that R~(r>>. 2)=  1, as expected by the 
dissociation property of the "molecules" in this convolution smearing 
construction. The energy bound takes the form: 
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U Ukawar (N 2) . . . .  ] 
bound k ~ 

(e2/a) 

l( m ) = - ( N - 2 )  Uo(OC)+--~Uo(OcR,,,)---~r ocR,,, 

1 (R3Q(oc) ) e -~" 
- 1  

Q(o~Rm) r 
(40) 

The "Onsager-molecule" result, in the convolution smearing approximation 
(CSA), for the screening potential takes the form (recall that F =  
( e2/a ) 1/ks T) 

H Yukawa {..x OM. CS.4 ~ r) 2 
= 2Uo(~)---~-- Uo(O~Rm) Z2F ix,. 

-l" ~m ~ -~m, O~Rm -- -~m A ( OtRm) \ ~ - -~mi  --1 (41) 

For r i> 2 we have R3(r >i 2) = 1 so that 

H Yukawa {_ - otr OM. CSa~ r >i 2) e 
= ~(r>~2, ~)-- (42) 

Z2( e2/a ) 1/k s T r 

For r = 0  we have Ram Q(oO/Q(o~R,,)= 2 and we get 

Yukawa _ HOM ( r = 0 )  
Z2F 

4 
= 2Uo(00--g- Uo(O~R,,) 

/x,,, 
(43) 

i.e., it is the exact OM result as expected from Eqs. (28). The leading 
smaU-r term is found analytically to be of order r 2, and is given by the 
corresponding term in Eq. (22) 

hYukawa  - -1(1 )2)(~mm) 2 0~ 2 
OM, 1 -r2= v ( o ~ R m ) ( o ~ R m  - -  U o ( ~ R m )  r 2 ( 4 4 )  

where, as above, Rm(~) is obtained from the solution of R 3 =  
2Q(~Rm)/Q(oO. In the limit ~ =0  it recovers the Jancovici result, h C~176 1 / 
Z2F= 1/4, for the Coulomb potential. Analytic calculation, in the r ~ 0 
limit, of the confined-molecule linearized Thomas-Fermi equation, shows 
that our CSA result, Eq. (44), is the exact OM result (as we expected on 
the basis of the corresponding results for the Coulomb potential). Thus, the 
smaU-r expansion of the screening potential of the Yukawa system in the 
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Fig. 1. The smearing radius, R,, at r = 0  as function of 0c (i.e., R,,(r=O) as obtained from 
the solution to Eq. (39)). The value at 0c=0, namely 2 ~/3, is the ion-sphere result for the 
Coulomb potential. See the text. 

strong coupling limit takes the form (where R m is again the r = 0  result, 
given in Fig. 1): 

I( 4 )(OC~R., ) ] ..['loMYUkawatr)~, -- Z 2 F  2Uo(OC) - - - ~ m  u~  --  U~ r2 "{- "'" 

(45) 
The Jancovici coefficient for the Yukawa potential is given by 

0C 2 
h Yukawa(oc) ----. ~ m  u~176 ( 4 6 )  

Recall that 

Uo(t) = Uo(t) = 
3 9 t 18 t2 

2t  2 10 t 2 - T ~  + "'" (47) 

so that, by using 

R,,, = 21/3 (1 - ~  
21/3_ 1 \ 

OC 2 + . . .  ] (48) 
3O / 
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we obtain 

h ~ u k a w a ( o ~ )  (0cRm) 2 1 (5.22/3+ 1) ~2+ ... 
= "3R '3'' Uo(0CRm)=4 - 40 (49) 

It is displayed in Fig. 2, along with a simple fit, given by 

( ~ )  1-0.18991~ 
(h r,~a,,a(~ ) )~, = 1 - 0.18991 ~ + 0.56948~ 2 (50) 

Y u k a w a  ( u ~ I , '72 / r',  The Yukawa screening potentials for H oM" c s a x r ) / z . , / 1  are displayed 
in Fig. 3 for different values of ~. The CSA cannot be expected to be very 
accurate for relatively large values of ~. Our numerical calculations indicate 
that the CSA is accurate for ~ < ~0.5, essentially for all values of ~ for 
which the linear-response treatment leading to the Yukawa potential is 
valid. If it is needed in, the general context of the Yukawa potential for 

> 0.5 then the screening potential can be approximated by a polynomial 
interpolation between r = 0 and r = 2, using the O M Jancovici coefficient as 
we derived, and the smoothness of the function at these end points. 

hi 

0.2 

0.15 

0.1 

0.05 

,< 

0'5 ', i'.~ ~ 2'.~ ~ ;.~ 

Fig. 2. The Jancovici coefficient, h~, for the Yukawa potential as function of ~: the full line 
Yuka va represents h r"k ..... (0~), Eq. 46), and the broken line represents the fit (h ! ' (~))~,, Eq. (50). 

The value at ~=0 ,  namely 1/4 is equal to the original Jancovici result ts) for the Coulomb 
potential. See the text. 
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Fig. 3. The Yukawa screening potentials H = u r,k ..... -- Ore. c s A ( r ) / Z 2 / F  as function of r for different 
values of �9 (from top to bot tom ~ = 0.002, 0.02, 0.1, 0.2, 0.4). For  0c = 0, the function is equal 
to the original CSA result ~9) for the Coulomb potential. Recall from Eq. (42) that  H = e - ~ ' / r  

for r >I 2. See the text. 

It is instructive to make connection with Jancovici's original exact 
method. Using (33) and (31) we can rewrite (46) in the form 

hYukawa(of.) (~~~ m )0~2~: = Uo(O~Rm) = ~  r g e r ( r ) e - ~  

1 o~ 2 ~ :  
- ~ +  ~-- r [ g e r ( r ) -  1] e - ~ d r  (51) 

where g e t ( r )  is the limit r/= 1 of the solution of the Percus-Yevick equa- 
tion for the pair correlation function between an impurity of radius Rm, 
given by R3,,,=2Q(ocRm)/Q(~), at the origin and a fluid particle of a hard 
sphere fluid with spheres of radius Ra= 1. According to the general 
asymptotic strong coupling relation between the Onsager Molecule result 
and fluid energy integrals, this indicates the following exact result, which 
can be obtained by following Jancovici's method: 

h ~uk,,wa ( o~ ) = 1 O~ 2 ~ :  -~ + --s r [ g~ ( r ) -- 1] e -~' dr (52) 

Here g~(r) is the pair correlation between an impurity with charge 2Ze at 
the origin and a charge Ze at r in a Yukawa OCP of charge Ze. Indeed, 
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this exact result can be obtained by following Jancovici's method. In the 
limit, the above integral goes to its Coulomb counterpart obtained by 
replacing g~(r) by go(r) computed with pure Coulomb interactions, for 
which the asymptotic fluid Madelung term is given by, (36'2~ 

f:  ( 5"22/3+1 ) 
lira r[ go(r)-  1 ] e -~  dr = - 

r-.oo 10 
(53) 

so that we recover the expansion (49). 

V. SCALING PROPERTIES FOR THE SCREENING POTENTIALS 
OF Y U K A W A  MIXTURES 

The screening potential between two identical ions, each of charge Zg, 
in the general mixture is obtained by a simple generalization of Eq. (41): 

H Yukawa OM. CSa. ii (r) 
F 

, ZZ uo(o~R,) 2Z~ =2~-~ - - ~  Uo(O~R,,,) 

Z2 ( r ) Z2 (R3Q(~ 
- 1) (54) 

where the Ri are obtained from Eqs. (30), and where R., is obtained from 

O(~Rm) [ 1 + R3m = R~ Q(~Ri) 6Q(aR,,,) Q'(o~R,,,) OR,,, 0 , o~R,,, (55) 

From either the convolution smearing approximation or from the 
exact small-r solution of the confined molecule linearized Thomas-Fermi 
equations (corresponding to the exact Onsager molecules), we obtain the 
following small-r expansion for the general Yukawa plasma mixture: 

HoY~M:~J aQr) (Z2uo(~Ri)dlZ2uo(o~Rj) (Zidc'gj)2Uo(~Ri+j)) 
F = \ R i  ~ - Ri+j 

ZiZJ((~ ... (56) 
R~+j 3 

where 

R/3+j_. R/3 (Zi + gy) Q(o~Ri+j) (57) 
ZiQ(o~Ri) 
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Like their Coulomb counterparts, the Yukawa Onsager molecules as 
defined have the property to "dissociate" when the distance between the 
two point charges is larger than Ri + Rj, i.e., 

Yukawac_, . Yukawa Yukawa for r >I Ri + R~ (58) U O M, ij ~ r ) = 1,~ OA" i AI- U O A, j 

H Yukawa[ r) - 
OM, O" ~, e 

r" = Z~Zj ~ r  for r i> R~ + R s (59) 

Yuka wa ( .. x The continuity of the function HoM, i s ~r) and its first derivatives implies 
that near "dissociation" a few-term Taylor series expansion of HoM,~ srukawa(r) -~ 

around r = Ri + R s (using the above Yukawa functional form for r4rukawa . z  OM, ij 
(r I> R~ + Ry)) will provide a good estimate of the function. The Onsager 
Molecule results show the relevance of two different lengths: d~i = Ri + Ry/2 
which is the "dissociation" radius, and R~+ j which is the radius of the 
molecule at small values of r (for the Coulomb potential R i + j - -  

(R 3 + R3)1/3). We need to consider separately the cases of "like" ( i=  j) and 
"unlike" (i r ions. For "like" (i = j) ions, du= R~ by definition, and the 
Onsager-molecule screening potentials for the Coulomb plasma obey 
HoM, ii(r ) =Z2i/RiHoM(r/Ri). For "unlike" (i-~ j) ions there is a cross-over 
of the relevant scaling length, as r changes from "dissociation" to "zero 
separation," between d o. and Ri+ s" 

At zero separation the expansion in powers of 0c takes the form ~z~ 

Yukawa[N'l ( g 2 Z ~  g 2 +  j ~  _ g i  z j o ~  HOM. i i ~, . j_ 9 
F --1-O\R~ 4 R s Ri+ d 

18 
175 ~ + Z ] R / - ( Z ,  + Zj)2R,+j) + ..- (60) 

which for the one-component system is: 

H Yukawa[ 13 ~ 9 
OM ~,"1 = - ~  ( 2 - 2 5 / 3 ) - ~  

T 10 

(1~5 3 _25/3 ) 0c z 4- (27/3--2)-t-1-6-6(27/3 ) q- "" 

= 1.05732- 0c + 0.368600c z + -.- (61) 

Note however that in the physics context of the linear response for 
electron screening, the bare interaction between the ions is Coulomb, and 
the Yukawa potential is just a "device" in order to get the correct pair 
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correlation function between the ions in the system. Thus, (17'2~ the 
interionic screening potential for a pair of ions in the electron screened 
plasma, is an even function of ~: 

i n t e r ion i c  Y u k a w a  .. ~ 1 o.(r) -- qb Y(r) ) a ( r ) + k .  T Hij ( r ) = H  (q~c 

r.k~w~ ZiZjF~ (62) = H,j (0)+ + ... 

For the one component system in the strong coupling limit it takes the 
form (recall the expansion (47))" 

H interionic[ r) 
OM 

F 

1 
= (1.05732 + 0.368600c 2 + .-. ) - ~  ~2r 

( 1  9 ~2 1~5 ~4R2+ . - . )  r2+ ... (63) 
- - 2 ] ~  3 10---R --  

where R is obtained from the solution of 

R3 _ 2 Q ( ~ R  (64)  
Q(~) 

and thus 

H in t e r ion ic  ( r ) 
O M  

F 
= (1.05732 + 0.368600c 2 + ... ) 

1 
-- - 0c2r -- (0.25 -- 0.22343~ 2 + -'- ) r 2 -I- .-. 

2 
(65) 

i n t e r ion i c  .. x HOM (r) is obtained automatically t17'2~ when the confined-atom 
and confined-molecule linearized Thomas-Fermi treatment is employed in 
order to obtain the Onsager energy bounds, because that approach already 
includes the lhaear-response approximation which is the physical way to 
define a Yukawa effective potential between the ions in the electron- 
screened plasma. We note from Eq. (63) that the first effect of electron 
screening on H(r) is to introduce a linear term in its short distance form. 
In the limit ~ ~ 0 we get R3=  2 so that we recover the Coulomb result, 
HoM(r) = 9(25/3 -- 2) -- �89 2 + -. . ,  featuring the ion-sphere value for r = 0 
and the exact Jancovici coefficient. 

In summary, we have estimated the function H(r) by a difference of 
the form FE-F1 by using lower bounds for F2 and F1, F2 > .42 and 
F1 > .41. The replacement of F2 - F1 by .42 - -  . 4 1  is not justified in general. 
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Here, however, each lower bound represents the leading term (a fluid 
Madelung constant) in an asymptotic strong coupling F--, oo expansion <36) 
for the excess (over ideal gas) free energy of a classical Coulomb or 
Yukawa fluid. In the region of validity of the linear response treatment, 
namely 0c < ~0.5, these lower bounds are expected to be close to the quan- 
tities of interest in strong coupling (in particular, the fluid Madelung con- 
stant is close to the lattice Madelung constant; e.g., for the Coulomb OCP 
the ion-sphere result of -0 .9  is close to the bcc value of -0.895929). Thus, 
for weak screening the present estimates for H(r) in strong coupling should 
be accurate. As the value of 0c increases, the fluid Madelung constants as 
given by the Onsager bounds deviate more from the lattice Madelung 
constants of close packed structures, and the present estimates in strong 
coupling become less accurate. In general, the Onsager molecule approxi- 
mation entirely mises the oscilating structure of H(r) at large distances, 
which has to be incorporated by terms beyond the leading Madelung te rms.  (36) 

H(r) for arbitrary r, F, and = can be obtained numerically very accurately 
from a recently introduced density-functional approximation for pair 
correlations in uniform classical fluids. (37) The availability of the analytic 
Onsager molecule results greatly facilitates the solution of the density-func- 
tional integral equation. ~3s) 
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